IOWA STATE UNIVERSITY Digital Repository

Food Science and Human Nutrition Publications

Food Science and Human Nutrition

1-2018

Use of surfactant and enzymes in dry-grind corn ethanol fermentation improves yield of ethanol and distillers corn oil

Lei Fang Iowa State University

Tong Wang Professor Iowa State University, tongwang@iastate.edu

Buddhi P. Lamsal *Iowa State University,* lamsal@iastate.edu

Follow this and additional works at: https://lib.dr.iastate.edu/fshn_ag_pubs Part of the <u>Food Science Commons</u>, and the <u>Human and Clinical Nutrition Commons</u>

The complete bibliographic information for this item can be found at https://lib.dr.iastate.edu/ fshn_ag_pubs/209. For information on how to cite this item, please visit http://lib.dr.iastate.edu/ howtocite.html.

This Article is brought to you for free and open access by the Food Science and Human Nutrition at Iowa State University Digital Repository. It has been accepted for inclusion in Food Science and Human Nutrition Publications by an authorized administrator of Iowa State University Digital Repository. For more information, please contact digirep@iastate.edu.

Use of surfactant and enzymes in dry-grind corn ethanol fermentation improves yield of ethanol and distillers corn oil

Abstract

Distillers corn oil (DCO) is a valuable co-product of dry-grind corn ethanol process. It can be used for biofuel production and in animal feed. DCO can be present in different forms in the fermentation matrix, including oil adhering to solid surfaces such as cell wall and protein matrix, and oil contained in unbroken cells, which is difficult to partition to thin stillage by decanting. Effects of using surfactant (Tween[®] 80) and enzymes during fermentation on DCO partition to thin stillage and DCO recovery from the condensed corn distillers with solubles (CCDS) were investigated. There was more than 8 ~ 10% DCO adhered to wet cake solids in whole stillage produced by conventional procedure, and this part of DCO was moved to thin stillage when 500 ppm of Tween[®] 80 was used during fermentation. Enzymes reduced the particle size of wet cake solids and released more DCO from wet cake to thin stillage. However, the use of protease reduced oil recovery (4.0% versus 7.9% and 17.9%, protease versus control and non-starch polysaccharide hydrolyzing enzymes) by producing partially hydrolyzed protein, which may have acted as emulsifier. Moreover, a synergistic effect between the use of enzymes and Tween[®] 80 was found on DCO partition in thin stillage and its recovery from CCDS

Keywords

Dry-grind ethanol process, Distillers corn oil (DCO), Oil partition, Oil recovery Tween® 80, Hydrolyzing enzymes

Disciplines

Food Science | Human and Clinical Nutrition

Comments

This accepted manuscript is published as Fang, L., Wang, T.* and Lamsal, B. * 2018. Use Of Surfactant And Enzymes In Dry-Grind Corn Ethanol Fermentation Improves Yield Of Ethanol And Distillers Corn Oil, *Industrial Crops and Products*, 111(ref 26): 329-335. DOI: 10.1016/j.indcrop.2017.10.031. Posted with permission.

USE OF SURFACTANT AND HYDROLYZING ENZYMES IN DRY-GRIND

CORN PROCESSING IMPROVES ETHANOL YIELD AND DISTILLERS

CORN OIL RECOVERY

Lei Fang, Buddhi Lamsal*, Tong Wang*

Food Science and Human Nutrition Department

Iowa State University

Ames, Iowa, USA, 50011

*corresponding authors:

Buddhi Lamsal, Associate Professor 2312 Food Sciences Building Ames, IA 50010 Tel: 515-294-8681 Email: lamsal@iastate.edu

Tong Wang, Professor 2312 Food Sciences Building Ames, IA 50011 Tel: 515-294-5448 Email: tongwang@iastate.edu

Abstract:

Distillers corn oil (DCO) is a valuable co-product of dry-grind corn ethanol process and can be used in animal feed and for bio-fuel production. DCO can be in different forms in the fermentation matrix, including oil adhering to solid surfaces such as cell wall and protein matrix and oil contained in unbroken cells, which was difficult to partition to thin stillage by decanting. Effects of using surfactant (Tween® 80) and hydrolyzing enzymes during fermentation on DCO partition after decanting and DCO recovery from condensed corn distillers with solubles (CCDS) were investigated. There was about 8~10% DCO adhered to wet cake solids in whole stillage produced by conventional procedure, and this part of DCO partitioned to thin stillage when 500 ppm of Tween® 80 was added in corn slurry. Enzymes reduced the particle size of wet cake and released more DCO from wet cake to thin stillage. However, the use of protease reduced oil recovery (4.0% versus 7.9% and 17.9%, protease versus control and non-starch polysaccharides hydrolyzing enzymes) by producing partially hydrolyzed protein, which may have worked as emulsifier. Moreover, a synergistic effect between the use of enzymes and Tween® 80 was found on DCO partition in thin stillage and recovery from CCDS.

Keywords: dry-grind ethanol process, distillers corn oil (DCO), oil partition, oil recovery, Tween® 80, hydrolyzing enzyme.

Highlights:

- The use of Tween® 80 at the concentration of 500 ppm in corn slurry led to highest oil partition in thin stillage;
- The use of hydrolyzing enzymes during fermentation tended to move more oil from wet cake to thin stillage;
- The synergistic effect between surfactant and hydrolyzing enzyme on oil recovery from CCDS was demonstrated;
- The use of Tween® 80 had no negative effect on ethanol production.

1 **1 Introduction**

2	Dry-grind ethanol industry has become the second largest corn user in the United
3	States, producing 90% of the ethanol in U.S. in 2015. This industry was very
4	profitable in the past. However, due to the sharp decline in crude oil price, the price of
5	dry-grind corn ethanol fell sharply from \$2.18 per gallon in December 2014 to \$1.25
6	per gallon in February 2015 (Irwin and Good, 2015; Wisner, 2015). The additional
7	revenue streams from co-products of the dry-grind ethanol process are becoming
8	more important. One such co-product is the distillers corn oil (DCO), which is the oil
9	recovered from post-fermentation streams. The revenue from DCO has become more
10	and more important for U.S. ethanol plants, particularly in the low margin times
11	(Jayasinghe, 2015).
12	The most widely used method for DCO recovery in dry-grind ethanol process is
13	separating the oil from the condensed corn distillers solubles (CCDS) by centrifuge
14	(Moreau et al., 2012). The oil recovery procedure was described in a U.S. patent
15	7601858. In brief, after collecting ethanol by distillation (Figure 1), the ethanol-
16	removed whole stillage is separated by decanting into thin stillage and wet cake. In
17	general, 40~60% of total oil in corn whole kernel is left in wet cake and the rest goes
18	to thin stillage after decanting. The thin stillage is further evaporated to produce
19	CCDS with 60~85% moisture content, and the DCO is extracted from the CCDS by
20	using a disk stack centrifuge (Cantrell and Winsness, 2009). Many efforts have been
21	made to improve the DCO recovery from CCDS. Centrifugation coupled with oil

22	recovery aid is easy to use and relatively effective in improving oil recovery from the
23	CCDS. A number of commercial oil recovery aids have been designed for large-scale
24	process, including FoodPro SA9843 corn oil yield improver (General Electric,
25	Trevose, PA, USA), PTV M-5309 corn oil extraction aid (Ashland Chemical,
26	Covington, KY, USA), Ashland DPI-428 (Ashland Hercules Water Technologies,
27	Wilmington, DE, USA), and Hydri-Maize Demulsifier 300 (Hydrite Chemical Co.,
28	Waterloo, IA, USA). However, these products are designed for oil recovery from
29	CCDS only, and do not affect the partitioning of oil during decanting and oil from wet
30	cake.
31	DCO is present in several different forms during the dry-grind ethanol process,
32	including the oil adhering to surface of wet cake solids, like cell wall and protein
33	matrix (Majoni et al., 2011). Based on our preliminary experiments, about 8~10%
34	w/w of total corn oil was adhered to solid wet cake particles, which did not partition
35	to thin stillage fraction by decanting. The oil adhering to the wet cake surface is very
36	similar to the oil stain on a fabric surface of clothes. Surfactants as cleaning agents
37	work by reducing the surface tension and removing the oil as micelles. In our
38	previous study on the distribution of different types of oil in CCDS, the use of
39	surfactant mix resulted in a higher recovery of oil partially coming from surface
40	adhering oil (Fang et al., 2015). This gives the basis for our hypothesis that the
41	cleaning function of surfactants could be applied in dry-grind ethanol process to
42	partition the oil from wet cake to the thin stillage.

43	Surfactants have been applied in aqueous extraction processing to improve
44	vegetable oil recovery. Sodium dodecyl sulfate was used to improve recovery of
45	soybean oil (Campbell and Glatz, 2009) and canola oil (Tuntiwiwattanapun et al.,
46	2013) by extracting the oil trapped in disrupted cellular matrix. The extended-
47	surfactants, which is a recently developed new class of surfactants that works by
48	significantly reducing the interfacial tension, extracted 93-95% of total oil from the
49	insufficiently ground peanut and canola seeds (Do and Sabatini, 2010). However, due
50	to the safety issue of sodium dodecyl sulfate and extended-surfactants, they are not
51	allowed for human or animal consumption. To date, only a few reports on
52	destabilization of oil-in-water emulsion by using food-grade-surfactants are available.
53	Fang et al. (2015) attempted to improve oil recovery from CCDS by using Tween®
54	80-Span® 80-silica nanoparticle mixture. Zhang and Wang (2016) used Tween® 20
55	to improve peanut oil recovery. Both works explained the improved oil recovery as
56	the result of unstable emulsion formation by surfactant-protein competition on the
57	emulsion interface. Thus, we believed that using surfactant at the beginning of dry-
58	grind ethanol process could not only improve oil partition in thin stillage but also
59	increase the oil recovery from CCDS by demulsification.
60	There is a large portion of oil (40~60% of total oil in corn) remaining in intact
61	cells and protein/polysaccharide matrices of wet cake solids; enzyme hydrolysis of the
62	solids might be an efficient way to release this part of the oil. Luangthongkam et al.
63	(2015) reported that using a combination of cellulolytic enzymes, protease, and

phytase during fermentation led to a higher oil partition in thin stillage. However, no
research has been reported to confirm if hydrolyzing the non-fermentable components
during fermentation step can improve oil recovery from CCDS. Therefore, the
objectives of this research were 1) to determine the optimum level and best processing
stage to add the surfactant (Tween® 80) and 2) to investigate the synergistic effects of
surfactant and hydrolyzing enzymes (protease, cellulase, and pectinase) on ethanol
production and oil recovery.
2 Materials and Methods
2.1 Materials
Ground whole corn meal (average particle size of 0.44 mm), α -amylase
(Novozymes, Franklinton, NC), glucoamylase (liquid, Spirizyme Excel XHS,
Novozymes, Franklinton, NC), dry yeast (Saccharomyces cerevisiae; commercial
grade currently being used in the ethanol plant) and antibacterial chlorine dioxide
(commercial grade) were donated by Lincolnway Energy LLC, Ames, IA. Cellulase
(75,000 CU/g) and pectinase (3500 ENDO-PG/g) were provided by Bio-Cat (Troy,
VA). In this study, pectinase and cellulase were used as a mix (PC) with ratio 1:1 (w:
w). Fermgen TM (Acid protease, liquid, activity 1,000 SAP units/g) was provided by
DuPont Industrial Biosciences (Palo Alto, CA). The other chemicals, including
Tween® 80 (polysorbate 80), hydrochloride acid, petroleum ether, and ethyl ether
were purchased from Fisher Scientific (Fairlawn, NJ, USA).

84

المنسلي للاستشارات

85 **2.2 Corn fermentation**

86	The procedure of lab-scale fermentation is shown in Figure 2. The liquefaction
87	and simultaneous saccharification and fermentation of the corn slurry were performed
88	in 250-mL round bottom flasks with Tornado IS6 Overhead Stirring System (Radleys
89	Discovery Technologies, Shire Hill, Saffron Walden, UK) equipped with an anchored
90	stirring shaft. Ground corn was mixed with cold DI water (or Tween® 80 water
91	solution) at a 1:2 ratio, w: w The total amount of slurry was maintained at 225-230 g.
92	α -Amylase (0.15 mL) was added to the slurry and mixed at 81°C for 3h. After that,
93	the flasks were cooled to 30°C in an ice bath, and the pH of the cooled slurry was
94	adjusted to 4.0 with 3 M sulfuric acid. Chlorine dioxide (0.021 mL), ammonium
95	sulfate (0.065 mL of 0.2 g/g water), gluco-amylase (0.15 mL) and dry yeast (0.15 g)
96	were added. Fermentation was carried out at 30°C for 64 h with continuous stirring
97	(190 rpm). During fermentation, ethanol production was estimated by mass loss
98	according to the following equation (Wang et al., 2009).
99	Ethanol yield (g/100 g dry corn) = $100 \times \frac{46 \times (g \text{ of mass loss})}{44 \times (g \text{ of dry corn})}$
100	Where 46 and 44 are molecular weights of ethanol and CO ₂ , respectively.
101	For the experiments of adding hydrolyzing enzymes during fermentation, 0.375
102	mL of Fermgen or 0.3 g of PC was added before starting the fermentation. For
103	experiments of adding Tween® 80 in fermentation, Tween® 80 water solutions of
104	200, 300, 400, 500, 600, 700, 800, 1000 ppm were prepared and ground corn meal
105	was mixed with Tween® 80 solutions instead of DI water.

106 **2.3 Post-fermentation processing**

The rotary evaporation (Rotavapor R-210 and Vacuum Pump V-700, Buchi, 107 108 Switzerland) at 82 °C for 10 min was used to simulate the industrial distillation step. 109 After the distillation, water was added to make up for the weight loss during rotary 110 evaporation, giving the stillage a final solids content of 13% w/w. The whole stillage 111 was subjected to decanting following a procedure that simulates the industrial 112 decanting process (Wang et al., 2009) to obtain the thin stillage and wet cake 113 fractions. The wet yields, solid content and oil content of thin stillage and wet cake 114 were measured. CCDS was made by condensing thin stillage with rotary evaporation 115 at 75°C for 30 min. The solid content of CCDS was adjusted to 28% with water. All 116 CCDS samples were stored at 4°C until use. 117 2.4 Oil recovery from CCDS 118 Oil recovery from CCDS was simulated by using the method of Fang et al. 119 (2015). To compare the effect of surfactant addition, 2300 ppm Tween® 80 was 120 added in CCDS before heating and shaking. In brief, 40g of CCDS in a 250-mL 121 centrifuge bottle was heated at 80-85°C for 10 min at 100 rpm shaking in a shaker 122 water bath (Model R-76, New Brunswick Scientific Co. Inc., NJ, USA). Immediately 123 following heating and shaking, oil was separated using a Centra MP4 centrifuge 124 (International Equipment Company, Needham Heights, MA, USA) at 3000 xg for 10 125 min. The oil layer was collected by washing the oil on the top layer with hexanes (5 washes with 20, 20, 10, 10, and 5 mL respectively). The solvent was removed by 126

127 evaporation then by vacuum drying. The weight of the oil was determined

128 gravimetrically.

129 **2.5 Surfactant recyclability with backset**

- 130 Thin stillage sample was collected from corn fermentation with 500 ppm
- 131 Tween® 80 as described in Section 2.2 and was used as backset to replace part of the
- 132 incoming water and made the 150 g total volume liquid in the new batch of
- 133 fermentation. Batches of fermentation were performed with corn slurries prepared
- 134 with 100% DI water (Treatment 1), 100% fresh made 500 ppm Tween® 80
- 135 (Treatment 2), 50% fresh made 500 ppm Tween® 80 solution + 50% backset
- 136 (Treatment 3), and 50% fresh made 1000 ppm Tween® 80 solution + 50% backset
- 137 (Treatment 4). The thin stillage decanted from fermentation as backset was collected
- 138 as described in Section 2.3.
- 139 **2.6 Analytical methods**
- 140 The adhering oil droplets on wet cake surface were observed using a light
- 141 microscope (BX40, Olympus Corporation, Tokyo, Japan) after staining in Sudan IV
- 142 ethanol solution.
- 143 The water holding capacity of wet cake was measured to figure out the reason for
- 144 the low solid content in thin stillage resulted by using surfactant. Wet cake samples
- 145 were dried overnight at 105 °C. The water holding capacity (WHC) was analyzed by
- soaking 250 mg of dried wet cake in 10 mL of water for 24 h at room temperature.
- 147 Samples were centrifuged at room temperature at 5000 xg for 20 min, and inverted

148	and subsequently drained for 15 min. WHC was calculated as the amount of water
149	retained per gram of dry material.
150	The solid content was determined by weight difference after oven-drying at
151	105°C for 5 h. Total oil content was determined by acid hydrolysis method (AOAC
152	Official Method 922.06).
153	2.7 Calculations
154	The calculations of wet yield of thin stillage, solid distribution in thin stillage, oil
155	partition in thin stillage, and oil recovery from CCDS are described as below:
156	Wet yield of thin stillage,%
157	$= 100\% \times \frac{g \text{ of thin stillage}}{g \text{ of whole stillage, before decanting}}$
158	
159	Solid partition in thin stillage,%
160	= 100%
161	$\times \frac{g \text{ of } dry \text{ solids in thin stillage}}{g \text{ of } dry \text{ solids in whole stillage, before dacanting}}$
162	
163	Oil partition in thin stillage,%
164	$= 100\% \times \frac{g \text{ of oil in thin stillage}}{g \text{ of oil in whole stillage, before decanting}}$
165	
166	Oil recovery from CCDS, $\% = 100\% \times \frac{g \text{ of free oil}}{g \text{ of total oil in thick stillage}}$
167	
168	

169 **2.8 Statistical analysis**

All the treatments and analysis were triplicated. The data were analyzed by using
SAS (Version 9.4, SAS Institute Inc. Cary, NC) to test treatment difference at 95%
significant level.

173 **3 Results and Discussion**

174 **3.1** Oil partition in thin stillage as affected by adding surfactant in corn slurry

175 The optimal Tween® 80 concentration for increasing oil partition in thin stillage 176 was investigated. The concentration of Tween® 80 in corn slurry had a significant 177 effect on oil partition in thin stillage after decanting. As shown in Figure 2, the oil 178 partition in thin stillage was at 40% of total corn oil for surfactant concentrations 179 below 300 ppm, but the partition significantly improved to 50% when the Tween® 80 180 concentration was increased to 500 ppm. However, no more improvement was seen 181 over 500 ppm. Since surfactant cannot release the oil from the unbroken cells, the 182 extra oil partitioned in the thin stillage should be coming from the adhered oil on the 183 wet cake surface. This hypothesis is supported by microscopic observations in Figure 184 3, in which Sudan IV stained oil droplets can be seen in wet cake surface of the 185 control, but hardly seen in 500 ppm Tween® 80 treated samples. 186 The adhering oil on the surface of wet cake is very similar to oily dirt on surface 187 of clothes. Surfactant works as detergent to move adhering oil into water during 188 washing. The lipophilic ends of the surfactant molecules attach themselves to the oily 189 dirt, and the hydrophilic heads attach to the water. With continuous whirling, the oily

190	dirt is pulled away from the surface. In the fermentation tank, Tween® 80 worked as
191	a detergent, the adhering oil droplets were moved into the aqueous phase from the
192	surface of the wet cake with the help of continuous mixing in the process.
193	3.2 Ethanol production rate and yield as affected by using enzyme and surfactant
194	There was no adverse effect of adding Tween® 80 in corn slurry on ethanol yield
195	and production rate. When only Tween® 80 was added to fermentation (C500), a
196	significant increase in ethanol yield (from 28.13 in the control to 30.71 g/100 g dry
197	corn in C500) was observed (Table 1). The maximum ethanol production rate of C500
198	was similar with the control, but a higher average ethanol production rate was
199	observed (Figure 4). The mechanism behind this finding was not clear. However,
200	similar results were reported in studies of cellulosic ethanol production when non-
201	ionic surfactants were added, for the purpose of reducing enzyme-substrate interaction
202	(Alkasrawi et al., 2003). They reported that surfactant adsorption onto lignin
203	prevented unproductive binding of enzymes to lignin. Park et al. (1992) also
204	concluded that surfactants help the enzyme to desorb from the binding site on the
205	substrate surface after the completion of saccharification at that site. Though, the dry-
206	grind ethanol process has a different circumstance from cellulosic ethanol process, the
207	high fiber content in dry-grind ethanol process might have similar side-effects on
208	enzyme activity as by cellulosic matters. In this study, the non-ionic surfactant may
209	have the same mechanism to improve saccharification efficiency in dry-grind ethanol

210 process.

211	When only Fermgen (mainly a protease enzyme) was used during fermentation
212	(Table 1 and Figure 5), both ethanol production rate and yield increased significantly
213	compared to the control. The increased ethanol production rate suggested that
214	fermentation time could be reduced to approximately 40 h from 65 h. These findings
215	agreed with the results reported in literature in which protease was shown to increase
216	ethanol production rate and decrease supplemental N requirements (Johnston and
217	McAloon, 2014). Protease enzyme hydrolyzed corn protein and increased the
218	concentration of free amino acid and peptides which can be used as N source for
219	yeast. Moreover, protein matrix embeds corn starch in corn endosperm (Watson,
220	1987) and can be broken by a protease to make starch more available for producing
221	ethanol (Lamsal and Johnson, 2012).
222	When only the mixture of pectinase and cellulase was added (PC in Table 1 and
223	Figure 6), ethanol production rate and final yield were significantly increased
224	compared to the control. However, its effect was less significant than using Fermgen.
225	The mechanism of using PC to improve ethanol production rate and final yield is
226	different from using protease enzyme. PC hydrolyzed non-starch polysaccharides and
227	produced fermentable monosaccharides for yeast. However, products of PC
228	hydrolysis cannot stimulate the activity of yeast as the products of protease
229	hydrolysis.
230	When both Tween® 80 and PC were used, the ethanol production yield of using

231 PC500 (34.98 g ethanol per 100 g dry corn) was not significantly different with PC

232	alone (34.52 g ethanol per 100 g dry corn). Similar pattern was observed when
233	Fermgen and Tween® 80 were used, in which using Fermgen (35.19 g ethanol per
234	100 g dry corn) had no significant different compared to F500 (35.25 g ethanol per
235	100 g dry corn). Improvement in ethanol yield by using Tween® 80 was not observed
236	when enzymes were added during fermentation. As we speculated in the previous
237	section, non-ionic surfactant may improve ethanol yield by affecting enzyme-
238	substrate interaction. The enzyme hydrolysis reduces the particle size and makes the
239	substrate more available to saccharification enzyme, and this effect might have made
240	Tween® 80 unnecessary in this step to further reduce enzyme-substrate interaction.
241	3.3 Thin stillage yield, and solid and oil partitions in thin stillage as affected by
242	enzyme and surfactant treatments
242 243	enzyme and surfactant treatments The composition and properties of thin stillage are very important for the
242 243 244	enzyme and surfactant treatments The composition and properties of thin stillage are very important for the performance of piping, centrifuge efficiency, oil recovery and energy cost in ethanol
242243244245	enzyme and surfactant treatments The composition and properties of thin stillage are very important for the performance of piping, centrifuge efficiency, oil recovery and energy cost in ethanol plant. The wet yield of thin stillage was significantly improved in Fermgen treatment
 242 243 244 245 246 	enzyme and surfactant treatments The composition and properties of thin stillage are very important for the performance of piping, centrifuge efficiency, oil recovery and energy cost in ethanol plant. The wet yield of thin stillage was significantly improved in Fermgen treatment (85.9%) and PC treatment (87.1%) compared to the control (79.3%). Whereas, PC
 242 243 244 245 246 247 	enzyme and surfactant treatments The composition and properties of thin stillage are very important for the performance of piping, centrifuge efficiency, oil recovery and energy cost in ethanol plant. The wet yield of thin stillage was significantly improved in Fermgen treatment (85.9%) and PC treatment (87.1%) compared to the control (79.3%). Whereas, PC treatment had similar solid content (7.2%) and Fermgen treatment had lower solid
 242 243 244 245 246 247 248 	enzyme and surfactant treatments The composition and properties of thin stillage are very important for the performance of piping, centrifuge efficiency, oil recovery and energy cost in ethanol plant. The wet yield of thin stillage was significantly improved in Fermgen treatment (85.9%) and PC treatment (87.1%) compared to the control (79.3%). Whereas, PC treatment had similar solid content (7.2%) and Fermgen treatment had lower solid content (6.8%) compared to the control (7.2%). Similar results were observed by Yao
 242 243 244 245 246 247 248 249 	enzyme and surfactant treatments The composition and properties of thin stillage are very important for the performance of piping, centrifuge efficiency, oil recovery and energy cost in ethanol plant. The wet yield of thin stillage was significantly improved in Fermgen treatment (85.9%) and PC treatment (87.1%) compared to the control (79.3%). Whereas, PC treatment had similar solid content (7.2%) and Fermgen treatment had lower solid content (6.8%) compared to the control (7.2%). Similar results were observed by Yao et al. (2014) and Luangthongkam et al. (2015) when fiber hydrolyzing enzymes were
 242 243 244 245 246 247 248 249 250 	enzyme and surfactant treatments The composition and properties of thin stillage are very important for the performance of piping, centrifuge efficiency, oil recovery and energy cost in ethanol plant. The wet yield of thin stillage was significantly improved in Fermgen treatment (85.9%) and PC treatment (87.1%) compared to the control (79.3%). Whereas, PC treatment had similar solid content (7.2%) and Fermgen treatment had lower solid content (6.8%) compared to the control (7.2%). Similar results were observed by Yao et al. (2014) and Luangthongkam et al. (2015) when fiber hydrolyzing enzymes were used in fermentation. Likely, the hydrolysis action of the enzymes reduced the water
 242 243 244 245 246 247 248 249 250 251 	enzyme and surfactant treatments The composition and properties of thin stillage are very important for the performance of piping, centrifuge efficiency, oil recovery and energy cost in ethanol plant. The wet yield of thin stillage was significantly improved in Fermgen treatment (85.9%) and PC treatment (87.1%) compared to the control (79.3%). Whereas, PC treatment had similar solid content (7.2%) and Fermgen treatment had lower solid content (6.8%) compared to the control (7.2%). Similar results were observed by Yao et al. (2014) and Luangthongkam et al. (2015) when fiber hydrolyzing enzymes were buding capacity of insolubles in the wet cake by interrupting the large protein matrix

253 size of the solid substrates. Both functions of the enzymes resulted in more liquid and 254 finer solids partition in thin stillage, which contributed to the high thin stillage yield 255 and solid partition in thin stillage from the PC and Fermgen treated process. 256 A significant reduction of solid content in thin stillage was observed when Tween® 80 was added in corn slurry, which are 7.2% versus 6.8% (Control versus 257 258 C500), 6.8% versus 6.6% (Fermgen versus F500), and 7.2% versus 6.9% (PC versus 259 PC500) in Table 2. Lower solid content in thin stillage is preferable in ethanol plants, 260 due to low energy cost in piping and less fouling of evaporators. To further 261 understand the reason for this observation, we tested the WHC of the dried wet cake 262 for Tween® 80 solution and water. The dried wet cake can hold more DI water (4.39 263 ± 0.17 g water/g dried wet cake) than Tween® 80 solution (3.87 ± 0.02 g solution/g 264 dried wet cake). This may be explained by the reduced capillarity of solution due to 265 the action of surfactant, which make the liquid separation easier from the dried wet 266 cake by centrifugation.

Enzymes and Tween® 80 treatments significantly increased oil partition in thin stillage. Since more oil is in thin stillage, more oil can potentially be extracted. Table 2 shows that using hydrolyzing enzymes significantly increased oil partition in thin stillage from 40.8% (Control) to 52.6% (Fermgen) and 52.3% (PC). Comparing with using enzyme alone, Tween® 80 further improved the oil partition in thin stillage, which were 40.8% versus 49.3% (Control versus C500), 52.6% versus 58.5% (Fermgen versus F500), and 52.3% versus 54.9% (PC versus PC500). Before

274	decanting, the oil maybe present in different forms and a large proportion of oil
275	remains in unbroken cells and large matrix, like protein and cell wall components.
276	This part of oil can be released by enzyme hydrolyzing the solids or large particles.
277	These findings agreed with the reported observations in literatures (Luangthongkam et
278	al., 2015; Yao et al., 2014), which shown an improved oil partition in thin stillage by
279	adding NSPs hydrolyzing enzymes during fermentation. Different from the action of
280	enzymes, the use of surfactant improved the oil partition in a different way, i.e.
281	washing the adhering oil from wet cake surface into the aqueous phase. However,
282	when hydrolyzing enzymes were added, the improvement of oil partitioning in thin
283	stillage by adding surfactant in corn slurry was reduced comparing with non-enzyme
284	treatments, which partitioned 8.5% more of total corn oil from the control to C500,
285	5.9% from Fermgen to F500, and 2.6% from PC to PC500. The use of hydrolyzing
286	enzymes weakened the function of surfactant, probably due to the enzymatic
287	hydrolysis of protein and cell wall that freed the adhering oil into thin stillage. This
288	hypothesis is supported by the parallel improvements in solid partition and oil
289	partition when enzymes were used (Table 2).
290	3.4 Oil recovery from CCDS as affected by surfactant and enzyme
291	The use of hydrolyzing enzymes significantly improved oil content in CCDS, as
292	shown in Table 3. When Tween® 80 was used, the significant oil content increase

293 was found in the control (6.8% versus 9.3%, Control versus C500), whereas, only

294 numerical but not significant improvements were observed on Fermgen and PC295 treatment.

296	In the lab-scale experiment of oil recovery from CCDS, the use of PC in
297	fermentation significantly improved oil recovery from 7.9% (control) to 17.4% (PC)
298	when Tween® 80 was not added (Table 4). A similar finding has been reported by
299	Yao et al. (2014) who found an increased free oil recovery from thin stillage after
300	polysaccharide hydrolyzing enzyme treatment in fermentation. As expected, because
301	of the polysaccharides being partially broken by the PC enzymes, the trapped oil
302	would be released and present in the form of free oil. However, a significantly lower
303	oil recovery was found when Fermgen was added in fermentation. The partial
304	hydrolysis of protein maybe the reason for this observation. It has been reported that
305	the emulsification ability of rice protein (Paraman et al., 2007), soy protein isolate
306	(Kim et al., 1990) and pea protein isolate (Barac et al., 2011) can be enhanced by
307	partial enzyme hydrolysis. The duration of proteolytic treatment and enzyme type
308	played very important roles in the properties of enzyme modified proteins. In this
309	study, the protease hydrolyzed corn protein may have worked as a good emulsifier to
310	stabilize oil-in-water emulsion.
311	When Tween® 80 was added in corn slurry, the significant improvement in oil
312	recovery from CCDS was found in all treatments comparing with the non-surfactant

313 treatments (Table 4). Especially for the Fermgen treatment, adding surfactant in the

314 process significantly improved oil recovery from 4.0% (Fermgen) to 24.9% (F500)

315 without significant change in oil content of CCDS (Table 3).

316 Similarly, when Tween® 80 was added in CCDS directly, the significant 317 improvement of oil recovery was found in all treatments comparing with non-318 surfactant treatments (Table 4). Protein is a major stabilizer for oil-in-water emulsion 319 in CCDS. The oil recovery improvement of adding Tween® 80 in CCDS has been 320 explained as a result of surfactant and protein competition which formed an unstable 321 emulsion (Fang et al., 2015), when proteins were replaced by surfactants. However, 322 these improvements were significantly lower than when surfactant added in corn 323 slurry. 324 The enhanced oil recovery from CCDS by adding surfactant in corn slurry is 325 explained with two proposed mechanisms 1) more available oil is present in CCDS, 326 and 2) formation of more unstable emulsion. In the first explanation, surface adhering 327 oil could have been moved from wet cake surfaces during 64 h of fermentation into 328 the aqueous phase (Figure 1) and partitioned in thin stillage after decanting. This part 329 of oil was present in thin stillage as suspended oil droplet (free or in emulsion) and 330 can be recovered by centrifugation. In explanation for the second mechanism, when 331 surfactant was introduced to corn slurry or CCDS, a protein-surfactant co-stabilized 332 emulsion was formed (Figure 5). A higher concentration of protein on interfacial 333 surfaces contributes to a stronger interaction among protein molecules and this 334 interaction stabilizes the protein enabled emulsion (Mackie et al., 1999). When

335	Tween® 80 was added in CCDS, Tween® 80 competed and replaced protein from the
336	interface of emulsion. Although surfactants like Tween® 80 can stabilize oil-in-water
337	emulsions, they are not as strong as protein-protein interactions (Wilde et al., 2004).
338	In this case, this emulsion has lower stability than protein stabilized emulsion
339	(Wustneck et al., 1996). Zhang and Wang (2016) reported that the replacement
340	between surfactant and protein was not be an instant process. Thus, after dispersing
341	the Tween® 80 into CCDS by heating and shaking for 10 min in lab-scale
342	experiment, only a relatively small proportion of protein-surfactant co-stabilized
343	emulsion was formed, and this contributed to the improved oil recovery from CCDS.
344	However, the oil-in-water emulsion was not fully formed yet in corn slurry. Thus,
345	more Tween® 80 are involved in co-stabilizing oil-in-water emulsion with protein
346	during fermentation. After 64 h of fermentation with desirable temperature and
347	mechanical mixing, a relatively large proportion of protein-surfactant co-stabilized
348	emulsion was formed. This emulsion was not stable, thus it contributed to a
349	significantly higher oil recovery from CCDS after centrifugation (Table 4). These
350	findings agreed with the observations from Zhang and Wang (2016), who also
351	suggested adding Tween® 20 at the initial stage of aqueous extraction of peanut oil.
352	Based on the current observations and previous reports, the secondary mechanism
353	might have the primary contribution to improved oil recovery.
254	

356 **3.5 Tween® 80 recyclability in backset**

357	The 50% of water (w/w) was replaced by Tween® 80 containing thin stillage
358	(backset) for making new batch of corn slurry. Based on the experiment design,
359	Treatment 3 had 250 to 500 ppm Tween® 80 and Treatment 4 had 500~750 ppm
360	Tween® 80, depending on the concentration of active Tween® 80 in thin stillage
361	backset. As shown in Table 5, Treatment 4 had significantly higher oil partition than
362	Treatment 3, and the improvement (45.9 to 53.8%) was very similar to that between
363	non-surfactant fermentation (Treatment 1, no backset) and 500 ppm surfactant
364	fermentation (Treatment 2, no backset) (40.8 to 49.6%). This observation indicated
365	that the Tween® 80 in thin stillage backset cannot make the concentration of active
366	Tween® 80 to 500 ppm in Treatment 3, and the final concentration of Tween® 80 in
367	Treatment 3 might be even lower than 300 ppm based on the oil partition trend in
368	Figure 1. The recycled Tween® 80 in thin stillage backset may have lost its function
369	as detergent. Since the effects of Tween® 80 on oil partition and oil recovery were
370	observed, we believe that Tween® 80 was still in the thin stillage with entire
371	molecular structure, and most of Tween® 80 molecules were located on the interface
372	of oil-in-water emulsion in the backset and no free Tween® 80 worked as detergent to
373	wash adhering oil in next batch of fermentation.

374 **4 Conclusion**

375 The large portion of oil stayed in the wet cake should be moved to thin stillage376 and to be recovered by centrifugation. Tween[®] 80 and hydrolyzing enzymes have

377	shown to have the potential to increase DCO yield. Oil partition in thin stillage and
378	the oil recovery from CCDS were also significantly improved without any negative
379	effects on ethanol production. An additional benefit of using hydrolyzing enzymes
380	and surfactant during fermentation is that the application of these technologies would
381	not require any change in the design of a current ethanol plant. However, scale-up
382	experiments are needed to further confirm the effectiveness on commercial scale.
383	Moreover, research on the recyclability of the surfactant is needed to reduce process
384	cost and study of treatment effects on quality of DDGS is needed.
385	Acknowledgment
386	The authors would like to thank the ISU Fermentation Institute and Bioeconomy
387	Institute for funding and supporting this research, and Bio-Cat and DuPont Industrial
388	Biosciences companies for providing enzyme samples.
389	Abbreviations used
390	CCDS, condensed corn distillers solubles; DDGS, dried distillers grain with
391	solubles; DCO, distillers corn oil; C500, treatment of 500 ppm surfactant added in
392	corn slurry; PC, treatment of pectinase and cellulase added in fermentation; PC500,
393	treatment of pectinase and cellulase added in fermentation, and 500 ppm surfactant
394	added in corn slurry; F500, treatment of Fermgen added in fermentation and 500 ppm
395	surfactant added in corn slurry; WHC, water holding capacity.
396	

398 **References:**

399	Alkasrawi, M., Eriksson, T., Borjesson, J., Wingren, A., Galbe, M., Tjerneld, F.,
400	Zacchi, G., 2003. The effect of Tween-20 on simultaneous saccharification
401	and fermentation of softwood to ethanol. Enzyme Microb. Technol. 33, 71-78.
402	AOAC, 1992. Official Methods of Analysis, 15th ed.: Association of Official
403	Analytical Chemists: Washington, DC.
404	Barac, M., Cabrilo., S., Pesic, M., Stanojevic, S., Pavlicevic, M., Macej, O., Ristic,
405	N., 2011. Functional properties of pea (pisum sativum L.) protein isolates
406	modified with chymosin. Int. J. Mol. Sci. 12, 8372-8387.
407	Cantrell, D. F., Winsness, D. J. 2009. Method of processing ethanol byproducts and
408	related subsystems. U. S. Patent 7, 601, 858 B2.
409	Campbell, K. and Glatz, C., 2009. Mechanisms of aqueous extraction of soybean oil.
410	J. Agric. Food Chem. 57, 10904-10912.
411	Do, L., Sabatini, D., 2010. Aqueous extended-surfactant based method for vegetable
412	oil extraction: proof of concept. J. Am. Oil Chem. Soc. 87, 1211-1220.
413	Fang, L., Wang, T., Lamsal, B., 2015. Synergistic effect of surfactants and silica
414	nanoparticles on oil recovery from condensed corn distillers solubles (CCDS).
415	Ind. Crop. Prod. 77, 553-559.
416	Irwin, S., Good, D., 2015. Ethanol production profits: The risk from lower prices of
417	distillers grains. http://farmdocdaily.illinois.edu/2015/03/ethanol-production-
418	profits-risk-of-distillers-grains.html (October 13, 2015).
419	Jayasinghe, S., 2015. Distillers corn oil market:Oligopsony. <u>http://decision-</u>
420	innovation.typepad.com/solutions/2015/02/distillers-corn-oil-market-
421	oligopsony.html (October 13, 2015).
422	Johnston, D.B., McAloon, A.J., 2014. Protease increases fermentation rate and
423	ethanol yield in dry-grind ethanol production. Bioresource Techno. 154, 18-
424	25.
425	Kim, S. Y., Park, P. S., Rhee, K. C., 1990. Functional properties of proteolytic
426	enzyme modified soy protein isolate. J. Agric. Food Chem. 38, 651-656.
427	Lamsal, B. P. and Johnson, L. A. 2012. Flaking as a corn preparation technique for
428	dry-grind ethanol production using raw starch hydrolysis. J. Cereal Sci. 56,
429	253-259.
430	Luangthongkam, P., Fang, L., Noomhorm, A., Lamsal, B., 2015. Addition of
431	cellulolytic enzymes and phytase for improving ethanol termentation
432	performance and oil recovery in corn dry-grind process. Ind. Crop. Prod. 77,
433	803-808.
434	Majoni, S., Wang, T., Johnson, L. A., 2011. Physical and chemical processes to
435	enhance oil recovery from condensed corn distillers solubles. J. Am. Oil Chem.
436	Soc. 88, 425-434.
437	Mackie, A. K., Husband, F. A., Holt, C., Wilde, P., 1999. Adsorption of β -
438	Lactoglobulin variants A and B to the air–water interface. Food Sci. Tech. 34,
439	209-216.

440	Moreau, R.A., Johnston, D.B., Haas, M.J, Hicks, K.B., 2012. Aqueous extraction of
441	corn oil after fermentation in the dry-grind ethanol process. In: Farr, W.,
442	Proctor, A., editors. Green Oil Processing. Urbana, IL: AOCS Press. p. 53-70.
443	Paraman, I., Hettiarachchy, N. S., Schaefer, C., Beck, M.I., 2007. Hydrophobicity,
444	solubility, and emulsifying properties of enzyme-modified rice endosperm
445	protein. Cereal Chem. 84, 343-349.
446	Park, J.W., Takahata, Y., Kajiuchi, T., Akehata, T., 1992. Effects of nonionic
447	surfactant on enzymatic-hydrolysis of used newspaper. Biotechnol. Bioeng. 39,
448	117-120.
449	Tuntiwiwattanapun, N., Tongcumpou, C., Haagenson, D., Wiesenborn, D., 2013.
450	Development and scale-up of aqueous surfactantassisted extraction of canola
451	oil for use as biodiesel feedstock. J. Am. Oil Chem. Soc. 90, 1089-1099.
452	Wang, H., Wang, T., Pometto III, A. L., Johnson, L. A., 2009. A laboratory decanting
453	procedure to simulate whole stillage separation in dry-grind corn ethanol
454	process. J. Am. Oil. Chem. Soc. 86, 1241-1250.
455	Watson, S.A. 1987. Structure and composition. In: Watson, S.A., Ramstad, P.E.,
456	editors. Corn: Chemistry and Technology. St.Paul, Minnesota: American
457	Association of Cereal Chemists, Inc. p. 53-78.
458	Wisner, R. 2015. Impact of low ethanol prices on the corn market.
459	http://www.agmrc.org/renewable_energy/energy/impact-of-low-ethanol-
460	prices-on-the-corn-market/ (October 13, 2015)
461	Wilde, P., Mackie, A., Husband, F., Gunning, P., Morris, V., 2004. Proteins and
462	emulsifiers at liquid interfaces. Colloid Interface Sci. 108, 63-71.
463	Wustneck, R., Kragel, J., Miller, R., Wilde, P.J., Clark, D.C., 1996. The adsorption of
464	surface-active complexes between β -casein, β -lactoglobulin and ionic
465	surfactants and their shear rheological behavior. Colloids Sur A Physicochem
466	Eng Asp. 114, 255-265.
467	Yao, L., Luangthongkam, P., Wang, T., Lamsal, B., Fei, T., Wang, H., Johnson, L.A.,
468	Dasari, M., 2014. Improved corn ethanol fermentation and oil distribution by
469	using polysaccharide hydrolyzing enzymes. J. Bioprocess Eng. Biorefinery. 3,
470	323-331.
471	Zhang, S, Wang, T., 2016. Destabilization of emulsion formed during aqueous
472	extraction of peanut oil: synergistic effect of Tween 20 and pH. J. Am. Oil
473	Chem. Soc. 93, 1551-1561.
474	

Figure 2. Effect of surfactant concentrations on oil partition in thin stillage by
decanting. Data sharing the same letter has no significant difference (p>0.05).

- 512 Figure 3. Microscopic observations for surface of wet cake. Left: Control; Right: 500
- 513 ppm Tween® 80 added treatment

Figure 4. Effect of Tween® 80 addition on fermentation rate and ethanol yield. C500: 500 ppm Tween® 80 added in fermentation step of control group

Figure 5. Effect of protease and Tween® 80 addition on ethanol production
rate and ethanol yield. Fermgen: 0.5% of dry corn weight protease was added;
F500: 0.5% of dry corn weight protease and 500 ppm Tween® 80 were added

550	fermentation on etha	anol production.			
	Treatment		Maximum ethanol	Maximum ethano	ol
			yield, g/100 g dry	production rate, g	g/100
			corn at 64 h	g dry corn/ h	
	Control		$28.13\pm0.43\ c$	0.67 ± 0.11 c	b
	500 ppm Tween® 80 (C50)0)	$30.71\pm0.61b$	0.67 ± 0.04 c	f
	Pectinase and Cellulase (P	C)	34.52 ± 1.54 a	1.04 ± 0.05 c	2
	500 ppm +Pectinase and C	Cellulase	34.98 ± 0.25 a	1.05 ± 0.10 c	2
	(PC500)				
	Fermgen		35.19 ± 0.61 a	2.63 ± 0.20 a	a
	500 ppm + Fermgen (500F	F)	35.25 ± 0.15 a	2.31 ± 0.13 t	0
551	Data sharing the sam	ne letter in the sam	ne column have no si	gnificant different	
552	(p>0.05).				
553					
554					
555	Table 2.Thin stillage	ge production, sol	id and oil partition af	ter decanting	
		Thin stillage	Solid content in	Solid partition	Oil partition in
		wet yield, %	thin stillage, %	in thin stillage,	thin stillage, %
_				%	
С	ontrol	80.9±0.5 c	7.2±0.3 a	41.0±1.6 c	40.8±0.6 e
50	00 ppm Tween® 80 (C500)	79.3±1.2 c	6.8±0.2 b	36.02±1.8 d	49.3±0.7 d
Fe	ermgen	85.9±1.3 b	6.8±0.1 b	47.1±2.1 b	52.6±0.1 c
50	00 ppm + Fermgen (500F)	86.2±0.5 b	6.6±0.09 c	47.9±1.5 b	58.5±1.8 a
Pe	ectinase and Cellulase (PC)	87.1±0.3 a	7.2±0.1 a	52.2±1.0 a	52.3±1.6 c
50	00 ppm +Pectinase and	87.8±0.5 a	6.9±0.3 b	53.1±0.06 a	54.9±1.3 b
С	ellulase (PC500)				
556	Data sharing the sam	ne letter in the sam	ne column has no sig	nificant different	
557	(p>0.05).				

Table 1. Effect of Tween® 80 and hydrolyzing enzymes in dry-grind

558

Table	3. Total oil content in C	CDS, % dry basis	
		Oil content in CCI	DS, db%
Contro	ol	6.8±0.3 d	
500 pp	om Tween® 80 (C500)	9.3±0.9 c	
Fermg	en	13.3±0.1 a	
500 pp	om + Fermgen (500F)	13.8±0.1 a	
Pectina	ase and Cellulase (PC)	10.7±0.3 b	
500 pp (PC50)	om +Pectinase and Cellul 0)	ase 11.5±0.3 b	
Data s	sharing the same letter in	the same column have no s	ignificant different
(p>0.0)5).		0
, T	,		
Table 4.	Oil recovery from CCDS		
		Surfactant added in corn	Surfactant added
	Non-surfactant, %	slurry, %	in CCDS, %
Control	7.9±0.7 Cb	31.8±0.9 Aa	11.0±0.9 Bb
Fermgen	4.0±3.8 Cc	24.9±5.9 Ab	9.3±0.4 Bc
PC	17.4±1.7 Ca	24.5±1.8 Ab	19.3±0.9 Ba
ietter	on the sume column nave	mo significant anterent (p/	. 0.05). Dutu shuring
the sa (p>0.0 Table 5 .	me upper-case letter on t 05). Tween® 80 recycling s	he same row have no signifit tability in thin stillage back	icant different
the sa (p>0.0 Table 5 .	me upper-case letter on t 05). Tween® 80 recycling s	he same row have no signifi tability in thin stillage back Oil distribution in t	icant different set hin stillage, %
the sa (p>0.0 Table 5. Treatmen	me upper-case letter on t D5). Tween® 80 recycling s nt 1: Corn + 100% water	he same row have no signification $\frac{1}{10000000000000000000000000000000000$	icant different set hin stillage, %
the sa (p>0.0 Table 5. Treatmen Treatmen	me upper-case letter on t D5). Tween® 80 recycling s nt 1: Corn + 100% water nt 2: Corn + 100% 500pp	he same row have no signification tability in thin stillage back Oil distribution in the description of the	icant different set hin stillage, %
the sa (p>0.0 Table 5 . Treatmen Treatmen 50% B	me upper-case letter on t D5). Tween® 80 recycling s nt 1: Corn + 100% water nt 2: Corn + 100% 500pp tt 3: Corn + 50% 500ppm	he same row have no signification tability in thin stillage back Oil distribution in the distribution in	icant different set hin stillage, %
the sa (p>0.0 Table 5. Treatmen Treatmen 50% B Treamen 50% B	me upper-case letter on t (05). Tween® 80 recycling s nt 1: Corn + 100% water nt 2: Corn + 100% 500pp tt 3: Corn + 50% 500pp tt 4: Corn + 50% 1000pp	he same row have no signification tability in thin stillage back Oil distribution in the second s	icant different set hin stillage, %
the sa (p>0.0 Table 5. Treatmen Treatmen 50% B Treamen 50% B 50% B	me upper-case letter on t ()5). Tween® 80 recycling s nt 1: Corn + 100% water nt 2: Corn + 100% 500pp tt 3: Corn + 50% 500pp tt 4: Corn + 50% 1000pp om: 500 ppm Tween® 80	he same row have no signification tability in thin stillage back Oil distribution in the 40.8 \pm 0.6 b om 49.6 \pm 0.7 a h + 45.9 \pm 1.1 b m + 53.8 \pm 0.9 a water solution; 1000 ppm:	icant different set hin stillage, % 1000 ppm Tween®
the sa (p>0.0 Table 5. Treatmen Treatmen 50% B Treamen 50% B 500pp 80wat	me upper-case letter on t D5). Tween® 80 recycling s nt 1: Corn + 100% water nt 2: Corn + 100% 500pp at 3: Corn + 50% 500pp at 4: Corn + 50% 1000pp om: 500 ppm Tween® 80 ter solution; B: Backset fi	he same row have no signification tability in thin stillage back Oil distribution in the second state of the second state o	icant different set hin stillage, % 1000 ppm Tween® reated fermentation.
the sa (p>0.0 Table 5. Treatmen Treatmen 50% B Treamen 50% B 500pp 80wat Data s	me upper-case letter on the cost of the co	he same row have no signifi- tability in thin stillage back Oil distribution in t 40.8 ± 0.6 b $0m \qquad 49.6 \pm 0.7$ a $n + \qquad 45.9 \pm 1.1$ b $m + \qquad 53.8 \pm 0.9$ a water solution; 1000 ppm: rom 500 ppm Tween® 80 th the same column have no s	icant different set hin stillage, % 1000 ppm Tween® reated fermentation. ignificant different
the sa (p>0.0 Table 5. Treatmen Treatmen 50% B Treamen 50% B 500pp 80wat Data s (p>0.0	me upper-case letter on t Tween 80 recycling s Tween 80 recycling s Tit 1: Corn + 100% water Tit 2: Corn + 100% 500pp Tit 3: Corn + 50% 500pp Tit 3: Corn + 50% 1000pp Tit 4: Corn + 50% 1000pp Tit 4: Corn + 50% 1000pp Tit 500 ppm Tween Tit 880 solution; B: Backset fisharing the same letter in Tit 550.	he same row have no signifi- tability in thin stillage back Oil distribution in the dots ± 0.6 b and ± 0.6 b box 49.6 ± 0.7 a and $\pm 45.9 \pm 1.1$ b and $\pm 53.8 \pm 0.9$ a box water solution; 1000 ppm: rom 500 ppm Tween® 80 the the same column have no s	icant different set hin stillage, % 1000 ppm Tween® reated fermentation. ignificant different
the sa (p>0.0 Table 5. Treatmen Treatmen 50% B Treamen 50% B 500pp 80wat Data s (p>0.0	me upper-case letter on t D5). Tween® 80 recycling s nt 1: Corn + 100% water nt 2: Corn + 100% 500pp at 3: Corn + 50% 500pp at 4: Corn + 50% 1000pp om: 500 ppm Tween® 80 ter solution; B: Backset fi sharing the same letter in D5).	he same row have no signifi- tability in thin stillage back Oil distribution in t 40.8 ± 0.6 b $0m$ 49.6 ± 0.7 a n + 45.9 ± 1.1 b m + 53.8 ± 0.9 a 1000 ppm Tween® 80 tr the same column have no s	icant different set hin stillage, % 1000 ppm Tween® reated fermentation. ignificant different

المنسارات المستشارات